User Documentation for PVODE,
An ODE Solver for Parallel Computers

George D. Byrne
Illinois Institute of Technology

Alan C. Hindmarsh
Lawrence Livermore National Laboratory

Center for Applied Scientific Computing

UCRL-TD-130884
May 1998

DISCLAIMER
This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily con-
stitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

USER DOCUMENTATION FOR PVODE, AN ODE SOLVER FOR
PARALLEL COMPUTERS*

GEORGE D. BYRNE! AND ALAN C. HINDMARSH?

1. Introduction. PVODE is a general purpose ordinary differential equation (ODE)
solver for stiff and nonstiff ODEs. It is based on CVODE [5] [6], which is written in ANSI-
standard C. PVODE uses MPI (Message-Passing Interface) [8] and a revised version of the
vector module in CVODE to achieve parallelism and portability. PVODE is intended for
the SPMD (Single Program Multiple Data) environment with distributed memory, in which
all vectors are identically distributed across processors. In particular, the vector module
is designed to help the user assign a contiguous segment of a given vector to each of the
processors for parallel computation. The idea is for each processor to solve a certain fixed
subset of the ODEs.

To better understand PVODE, we first need to understand CVODE and its histori-
cal background. The ODE solver CVODE, which was written by Cohen and Hindmarsh,
combines features of two earlier Fortran codes, VODE [1] and VODPK [3]. Those two
codes were written by Brown, Byrne, and Hindmarsh. Both use variable-coefficient multi-
step integration methods, and address both stiff and nonstiff systems. (Stiffness is defined
as the presence of one or more very small damping time constants.) VODE uses direct
linear algebraic techniques to solve the underlying banded or dense linear systems of equa-
tions in conjunction with a modified Newton method in the stiff ODE case. On the other
hand, VODPK uses a preconditioned Krylov iterative method [2] to solve the underlying
linear system. User-supplied preconditioners directly address the dominant source of stiff-
ness. Consequently, CVODE implements both the direct and iterative methods. Currently,
with regard to the nonlinear and linear system solution, PVODE has three method options
available: functional iteration, Newton iteration with a diagonal approximate Jacobian, and
Newton iteration with the iterative method SPGMR (Scaled Preconditioned Generalized
Minimal Residual method). Both CVODE and PVODE are written in such a way that
other linear algebraic techniques could be easily incorporated, since the code is written with
a layer of linear system solver modules that is isolated, as far as possible, from the rest of
the code. Further, the code is structured so that it can readily be converted from double
precision to single precision. This precludes the maintenance of two versions of PVODE.

PVODE has been run on an IBM SP2, a Cray-T3D and Cray-T3E, and a cluster of
workstations. It is currently being used in a simulation of tokamak edge plasmas at LLNL.
(We are grateful to Dr. Michael Minkoff at Argonne National Laboratory for assistance
in the use of the IBM SP2 there.) Recently, the PVODE solver was incorporated into the

* Research performed under the auspices of the U.S. Department of Energy, by Lawrence Livermore
National Laboratory under contract W-7405-ENG-48. Work supported by LDRD, Project 95-ER-036.

t Computer Science and Applied Mathematics Department, Illinois Institute of Technology, Chicago, IL
60616

t Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA
94551

PETSc package (Portable Extensible Toolkit for Scientific computation) [9] developed at
Argonne.

The remainder of this paper is organized as follows: Section 2 sets the mathematical
notation and summarizes the basic methods. Section 3 summarizes the organization of the
PVODE solver, while Section 4 summarizes its usage. Section 5 describes a preconditioner
module, and Section 6 describes a set of Fortran/C interfaces. Section 7 describes two
example problems, and Section 8 gives some test results.

2. Mathematical Considerations. PVODE solves initial-value problems (IVPs) for
systems of ODEs. Such problems can be stated as

(1) y = f(ta y)7 y(tO) = Yo, Yy € RN

where 7y = dy/dt and R is the real N-dimensional vector space. That is, (1) represents
a system of N ordinary differential equations and their initial conditions at some ¢3. The
dependent variable is y and the independent variable is t. The independent variable need
not appear explicitly in the N-vector valued function f.

The IVP is solved by one of two numerical methods. These are the backward dif-
ferentiation formula (BDF) and the Adams-Moulton formula. Both are implemented in a
variable-stepsize, variable-order form. The BDF uses a fixed-leading-coefficient form. These
formulas can both be represented by a linear multistep formula

K1 K2
(2) Z A iYn—i + hn Z /Bn,iyn—i =0
1=0 =0

where the N-vector y,, is the computed approximation to y(t,), the exact solution of (1) at ¢,,.
The stepsize is h, =t, —t,_1. The coefficients «,, ; and 3, ; are uniquely determined by the
particular integration formula, the history of the stepsize, and the normalization oy = —1.
The Adams-Moulton formula is recommended for nonstiff ODEs and is represented by (2)
with K; = 1 and Ky = ¢ — 1. The order of this formula is ¢ and its values range from 1
through 12. For stiff ODEs, BDF should be selected and is represented by (2) with K; = ¢
and Ky = 0. For BDF, the order ¢ may take on values from 1 through 5. In the case of
either formula, the integration begins with ¢ = 1, and after that ¢ varies automatically and
dynamically.

For either BDF or the Adams formula, 9, denotes f(¢,, y,). That is, (2) is an implicit
formula, and the nonlinear equation

(3) G(yn) = Yn— hnﬁn,of(tna yn) —Qp = 0
an = Z(an,iyn—i + hnﬁn,zyn—z)
>0

must be solved for y, at each time step. For nonstiff problems, functional (or fixpoint)
iteration is normally used and does not require the solution of a linear system of equations.
For stiff problems, a Newton iteration is used and for each iteration an underlying linear
system must be solved. This linear system of equations has the form

(4) MYnm+1) = Ynm)] = =G (Yn(m))
4

where 9/p,(m) is the mth approximation to y,, and M approximates 0G/0y:

(5) Maloy, J=L ohp,.
Y

At present, aside from the diagonal Jacobian approximation, the only option implemented
in PVODE for solving the linear systems (4) is the iterative method SPGMR (scaled, pre-
conditioned GMRES) [2], which is a Krylov subspace method. In most cases, performance
of SPGMR is improved by user-supplied preconditioners. The user may precondition the
system on the left, on the right, on both the left and right, or use no preconditioner.

The integrator computes an estimate F,, of the local error at each time step, and strives
to satisfy the following inequality
(6) (241 <1.

TMS,w
Here the weighted root-mean-square norm is defined by

N 1 1/2
2
) 1B = |32 7 (0]
i=1

where E, ; denotes the ith component of E,, and the ith component of the weight vector is

1
W= rtolly;| + atol;

(8)

This permits an arbitrary combination of relative and absolute error control. The user-
specified relative error tolerance is the scalar rtol and the user-specified absolute error tol-
erance is atol which may be an N-vector (as indicated above) or a scalar. The value for
rtol indicates the number of digits of relative accuracy for a single time step. The spec-
ified value for atol; indicates the values of the corresponding component of the solution
vector which may be thought of as being zero, or at the noise level. In particular, if we
set atol; = rtol x floor; then floor; represents the floor value for the 7th component of the
solution and is that magnitude of the component for which there is a crossover from relative
error control to absolute error control. Since these tolerances define the allowed error per
step, they should be chosen conservatively. Experience indicates that a conservative choice
yields a more economical solution than error tolerances that are too large.

In most cases of interest to the PVODE user, the technique of integration will involve
BDF, the Newton method, and SPGMR.

3. Code Organization. One way to visualize PVODE is to think of the code as
being organized in layers, as shown in Fig. 1. The user’'s main program resides at the
top level. This program makes various initialization calls, and calls the core integrator
CVode, which carries out the integration steps. Of course, the user’s main program also
manages input/output. At the next level down, the core integrator CVode manages the time
integration, and is independent of the linear system method. CVode calls the user supplied
function £ and accesses the linear system solver. At the third level, the linear system solver

5

CVSPGMR can be found, along with the approximate diagonal solver CVDIAG. Actually,
CVSPGMR calls a generic solver for the SPGMR method, consisting of modules SPGMR
and ITERATIV. CVSPGMR also accesses the user-supplied preconditioner solve routine,
if specified, and possibly also a user-supplied routine that computes and preprocesses the
preconditioner by way of the Jacobian matrix or an approximation to it. Other linear system
solvers may be added to the package in the future. Such additions will be independent of
the core integrator and CVSPGMR. Several supporting modules reside at the fourth level.
The LLNLTYPS module defines types real, integer, and boole (boolean), and facilitates
changing the precision of the arithmetic in the package from double to single, or the reverse.
The LLNLMATH module specifies power functions and provides a function to compute the
machine unit roundoff. Finally, the NVECTOR module is discussed below.

The key to being able to move from the sequential computing environment to the parallel
computing environment lies in the NVECTOR module. The idea is to distribute the system
of ODEs over the several processors so that each processor is solving a contiguous subset of
the system. This is achieved through the NVECTOR module, which handles all calculations
on N-vectors in a distributed manner. For any vector operation, each processor performs the
operation on its contiguous elements of the input vectors, of length (say) Nlocal, followed by
a global reduction operation where needed. In this way, vector calculations can be performed
simultaneously with each processor working on its block of the vector. Vector kernels are
designed to be used in a straightforward way for various vector operations that require the
use of the entire distributed N-vector. These kernels include dot products, weighted root-
mean-square norms, linear sums, and so on. The key lies in standardizing the interface
to the vector kernels without referring directly to the underlying vector structure. This
is accomplished through abstract data types that describe the machine environment data
block (type machEnvType) and all N-vectors (type N_Vector). Functions to define a block
of machine-dependent information and to free that block of information are also included in
the vector module.

The version of PVODE described so far uses the MPI (Message Passing Interface) system
(8] for all inter-processor communication. This achieves a high degree of portability, since
MPI is becoming widely accepted as a standard for message passing software. In addition,
however, we have prepared a version for the Cray-T3D and -T3E using the Cray Shared
Memory (SHMEM) Library. This involves a separate version of the vector module based on
SHMEM instead of MPI.

For a different parallel computing environment, some rewriting of the vector module
could allow the use of other specific machine-dependent instructions.

4. Using PVODE. This section is concerned with the use of PVODE and consists of
three subsections. These treat the header files, the layout of the user’s main program, and
user-supplied functions or routines. For further details not specific to the parallel extensions,
the reader should see the CVODE User Guide [5]. The listing of a sample program in the
Appendix may also be helpful. That code is intended to serve as a template and is included
in the PVODE package.

User Program

main(...), f(..), Precond(..), Psolve(...)

‘ Main CVODE Integrator ‘

‘ cvode.h, cvode.c ‘

‘ CVDIAG ‘ CVSPGMR Future additional
linear solvers
‘ cvspgmr.h, cvspgmr.c

|

SPGMR

‘ cvdiag.h, cvdiag.c

spgmr.h, spgmr.c

¢

ITERATIV

iterativ.h, iterativ.c

NVECTOR

nvector.h, nvector.c

LLNLTYPS

lInityps.h

LLNLMATH

lInimath.h, lInlmath.c

F1G. 1. Overall structure of the PVODE package. Modules comprising the central solver are distinguished
by rounded boxes, while the user program, generic linear solvers, and auxiliary modules are in unrounded
bozes.

4.1. Header Files. The calling program must include several header files so that var-
ious macros and data types can be used. The header files that are always required are:
e 11nltyps.h, which defines the types real, integer, boole (for boolean), and
constants FALSE and TRUE
e cvode.h, the header file for CVODE, which defines the several types and various
constants, and includes function prototypes
e nvector.h, the header file for the NVECTOR module outlined above
e mpi.h, the MPI header file
If the user chooses Newton iteration together with the linear system solver SPGMR,
then (minimally) the following header file will be required by CVODE:
e cvspgmr.h, which is used with the Krylov solver SPGMR in the context of PVODE.
This in turn includes a header file (iterativ.h) which enumerates the kind of
preconditioning and the choices for the Gram-Schmidt process.
Other headers may be needed, according as to the choice of preconditioner, etc. In one of
the examples to follow, preconditioning is done with a block-diagonal matrix. For this, the
header smalldense.h is included.

4.2. A Skeleton of the User’s Main Program. The user’s program must have the
following steps in the order indicated:

e MPI_Init(&argc, &argv); to initialize MPI if used by the user’s program. Here
argc and argv are the command line argument counter and array received by main.

e Set Nlocal, the local vector length (the sub-vector length for this processor); neq,
the global vector length (the problem size N, and the sum of all the values of
Nlocal); and the active set of processors.

e machEnv = PVecInitMPI(comm, Nlocal, neq, &argc, &argv); to initialize the
NVECTOR module. Here comm is the MPI communicator, set in one of two ways:
If a proper subset of active processors is to be used, comm must be set by suitable
MPI calls. Otherwise, to specify that all processors are to be used, comm must be
either MPI_COMM_WORLD or NULL.

e Set the vector y of initial values. Use the macro N_VMAKE(y, ydata, machEnv);
if an existing array ydata contains the initial values of y. Otherwise, make the
call y = N_VNew(neq, machEnv); and load initial values into the array defined by
N_VDATA(y).

e cvode mem = CVodeMalloc(...); which allocates internal memory for CVODE,
initializes CVODE, and returns a pointer to the CVODE memory structure. (See
details below.)

e CVSpgmr(...); if Newton iteration is chosen. (See details below.)

e ier = CVode(cvode mem, tout, y, &t, itask); foreach pointt =tout at which
output is desired. Set itask to NORMAL to have the integrator overshoot tout and
interpolate, or ONE_STEP to take a single step and return.

e N_VDISPOSE; or N_VFree; upon completion of the integration, to deallocate the
memory for the vector y, allocated by N_VMAKE or N_VNew, respectively.

e CVodeFree(cvode_mem) ; to free the memory allocated for CVODE.

e PVecFreeMPI(machEnv) ; to free machine-dependent data.

8

The form of the call to CVodeMalloc is
cvode mem = CVodeMalloc(neq, f, tO, yO, lmm, iter, itol, &rtol,
atol, f data, errfp, optIn, iopt, ropt, machEnv)
where neq is the number of ODEs in the system, f is the C function to compute f in the
ODE, t0 is the initial value of ¢ and yO0 is the initial value of y (which can be the same as
the vector y described above). The flag 1mm is used to select the linear multistep method
and may be one of two possible values: ADAMS or BDF. The type of iteration is selected
by replacing iter with either NEWTON or FUNCTIONAL. The next three parameters are used
to set the error control. The flag itol is replaced by either SS or SV, where SS indicates
scalar relative error tolerance and scalar absolute error tolerance, while SV indicates scalar
relative error tolerance and vector absolute error tolerance. The latter choice is important
when the absolute error tolerance needs to be different for each component of the ODE. The
arguments &rtol and atol are pointers to the user’s error tolerances, and f_data is a pointer
to user-defined space passed directly to the user’s £ function. The file pointer errfp points
to the file where error messages from CVODE are to be written (NULL for stdout). iopt
and ropt are integer and real arrays for optional input and output. If optIn is replaced by
FALSE, then the user is not going to provide optional input, while if it is TRUE then optional
inputs are examined in iopt and ropt. The final argument, machEnv, is a pointer to machine
environment-specific information.
The form of the call to CVSpgmr is

CVSpgmr (cvode_mem, pretype, gstype, maxl, delt, Precond, PSolve, P_data)
Here pretype specifies the preconditioning type, with values NONE, LEFT, RIGHT, or BOTH;
and gstype specifies the Gram-Schmidt orthogonalization type, with values MODIFIED_GS or
CLASSICAL_GS. The arguments max1 and delt are optional inputs for the maximum Krylov
dimension and the SPGMR convergence test constant, respectively. P_data is a pointer to
user-defined space which PVODE passes to the user’s preconditioning functions for use there.

4.3. User-Supplied Functions. The user-supplied routines consist of one function
defining the ODE, and (optionally) one or two functions that define the preconditioner for
use in the SPGMR algorithm. The first of these C functions defines f in (1) and must be of
type RhsFn. The form of this C function is:

void f(integer N, real t, N Vector y, N_Vector ydot, void *f_data)
This function has as input the number of ODEs N, the value of the independent variable t,
and dependent, variable vector y. The computed value of f(¢,y) is stored in the N-vector
ydot. The pointer f_data was seen previously in the call to CVodeMalloc in Section 4.2 and
points to data required in the computation of f(¢,y). There is no return value for a RhsFn.

If preconditioning is used, then the user must provide a C function to solve the linear
system Pz = r where P may be either a left or a right preconditioner matrix. This C
function must be of type CVSpgmrPSolveFn. The Psolve function has the following form:

int PSolve(integer N, real t, N_Vector y, N_Vector fy, N_Vector vtemp,
real gamma, N _Vector ewt, real delta, long int *nfePtr,
N_Vector r, int lr, void *P_data, N_Vector z)
Its input is N, the number of ODEs and the length of all vectors; t, the current value of the
independent variable; y, the current value of the dependent variable vector; fy, the current

9

vector f(t,y); vtemp, a pointer to memory allocated as an N-vector workspace; and gamma,
the current value of the scalar y in the Newton matrix (5). Further input parameters are ewt,
the error weight vector; delta, an input tolerance if Psolve is to use an iterative method;
nfePtr, a pointer to the PVODE data nfe, the number of calls to the £ routine; r, the right
hand side vector in the linear system; 1r, an input flag set to 1 to indicate a left preconditioner
or 2 for a right preconditioner. P_data is the pointer to the user preconditioner data passed
to CVSpgmr. The only output argument is z, the vector computed by Psolve. The integer
returned value is to be negative if the Psolve function failed with an unrecoverable error, 0
if Psolve was successful, or positive if there was a recoverable error.

If the user’s preconditioner requires that any Jacobian related data be evaluated or
preprocessed, then this needs to be done in the optional user-supplied C function Precond.
Most of the arguments for this function have been seen above. The Precond function has
the form:

int Precond (integer N, real t, N.Vector y, N_Vector fy, boole jok,
boole *jcurPtr, real gamma, N_Vector ewt, real h, real uround,
long int *nfePtr, void *P_data,
N_Vector vtempl, N Vector vtemp2, N Vector vtemp3)
The arguments which have not been discussed previously are the following. The input flag
jok indicates whether or not Jacobian-related data needs to be recomputed. If jok ==
FALSE, then it is to be recomputed from scratch. If jok == TRUE, and Jacobian-related data
was saved from the previous call to Precond, then the data can be reused with the current
value of gamma. The parameter jcurPtr is a pointer to a boolean output flag to be set by
Precond. Set *jcurPtr == TRUE if the Jacobian data was recomputed, and set *jcurPtr
== FALSE if the Jacobian data was not recomputed and saved data was reused. The last
three arguments are temporary N-vectors available for workspace. The current stepsize h
and unit roundoff uround are supplied for possible use in difference quotient calculations.

4.4. Use by a C++ Application. PVODE is written in a manner that permits it to
be used by applications written in C++4 as well as in C. For this purpose, each PVODE header
file is wrapped with conditionally compiled lines reading extern "C" { ... }, conditional
on the variable __cplusplus being defined. This directive causes the C++ compiler to
use C-style names when compiling the function prototypes encountered. Users with C++
applications should also be aware that we have defined, in 11nltyps.h, a boolean variable
type, boole, since C has no such type. The type boole is equated to type int, and so
arguments in user calls, or calls to user-supplied routines, which are of type boole can be
typed as either boole or int by the user. The same applies to vector kernels which have a
type boole return value, if the user is providing these kernels.

5. A Band-Block-Diagonal Preconditioner Module. A principal reason for using
a parallel ODE solver such as PVODE lies in the solution of partial differential equations
(PDEs). Moreover, the use of a Krylov iterative method for the solution of many such
problems is motivated by the nature of the underlying linear system of equations (4) that
must be solved at each time step. The linear algebraic system is large, sparse, and structured.
However, if a Krylov iterative method is to be effective in this setting, then a nontrivial

10

preconditioner needs to be used. Otherwise, the rate of convergence of the Krylov iterative
method is usually unacceptably slow. Unfortunately, an effective preconditioner tends to be
problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of
PDE-based problems. It has been successfully used for several realistic, large-scale problems
[11] and is included in a software module within the PVODE package. This module generates
a preconditioner that is a block-diagonal matrix with each block being a band matrix. The
blocks need not have the same number of super- and sub-diagonals and these numbers
may vary from block to block. This Band-Block-Diagonal Preconditioner module is called
PVBBDPRE.

One way to envision these preconditioners is to think of the domain of the computa-
tional PDE problem as being subdivided into M non-overlapping subdomains. Each of these
subdomains is then assigned to one of the M processors to be used to solve the ODE system.
The basic idea is to isolate the preconditioning so that it is local to each processor, and
also to use a (possibly cheaper) approximate right-hand side function. This requires the
definition of a new function g(¢,y) which approximates the function f(¢,y) in the definition
of the ODE system (1). However, the user may set g = f. Corresponding to the domain
decomposition, there is a decomposition of the solution vector y into M disjoint blocks y,,,
and a decomposition of g into blocks g,,. The block g,, depends on y,, and also on compo-
nents of blocks y,, associated with neighboring subdomains (so-called ghost-cell data). Let
9Jm denote y,, augmented with those other components on which g,, depends. Then we have

(9) g(t, y) = [gl (ta l_ll): g?(ta gQ)a R gM(ta gM)]T

and each of the blocks ¢,,,(t, J,n) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

(10) P:diag[Pl,PQ,...,PM]
where
(11) P,~1—n~J,

and J,,, is a difference quotient approximation to 0¢m,/0ym,. This matrix is taken to be
banded, with upper and lower half-bandwidths mu and ml defined as the number of non-
zero diagonals above and below the main diagonal, respectively. The difference quotient
approximation is computed using mu + ml + 2 evaluations of g,,. The parameters ml and
mu need not be the true half-bandwidths of the Jacobian of the local block of g, if smaller
values provide a more efficient preconditioner. Also, they need not be the same on every
processor. The solution of the complete linear system

(12) Pr=b
reduces to solving each of the equations

(13) Pxm = bn
11

and this is done by banded LU factorization of P,, followed by a banded backsolve.

To use this PVBBDPRE module, the user must supply two functions which the module
calls to construct P. These are in addition to the user-supplied right-hand side function £.

e A function gloc(Nlocal, t, ylocal, glocal, f_data) must be supplied by the
user to compute g(t,y). It loads the real array glocal as a function of t and ylocal.
Both glocal and ylocal are of length Nlocal, the local vector length.

e A function cfn(Nlocal, t, y, f_data) which must be supplied to perform all
inter-processor communications necessary for the execution of the gloc function,
using the input vector y of type N_Vector.

Both functions take as input the same pointer f_data as that passed by the user to
CVodeMalloc and passed to the user’s function f, and neither function has a return value.
The user is responsible for providing space (presumably within f _data) for components of y
that are communicated by cfn from the other processors, and that are then used by gloc,
which is not expected to do any communication.

The user’s calling program should include the following elements:

e #include ‘‘pvbbdpre.h’’ for needed function prototypes and for type PVBBDData.

PVBBDData p_data;

machEnv = PVecInitMPI(comm, Nlocal, N, argc, argv);

N_VMake(y, ydata, machEnv;

cvode_mem = CVodeMaloc(N, f, ...);

p-data = PVBBDAlloc(Nlocal, mu, ml, gloc, cfn, f data); where the upper
and lower half-bandwidths are mu and ml, respectively; gloc and cfn are names of
user-supplied functions; and f_data is a pointer to private data.

e CVSpgmr (cvode mem, pretype, gstype, maxl, delt, PVBBDPrecon,
PVBBDPSol, p_data); with the memory pointers cvode mem and p_data returned
by the two previous calls, the four SPGMR parameters (pretype, gstype, maxl,
delt) and the names of the preconditioner routines (PVBBDPrecon, PVBBDPSol)
supplied with the PVBBDPRE module.

e ier = CVode(cvode mem, tout, y, &t, itask); to carry out the integration to
t = tout.

e PVBBDFree(p_data); to free the PVBBDPRE memory block.

e CVodeFree(cvode_mem); to free the CVode memory block.

e PVecFreeMPI(machEnv); to free the PVODE memory block.

Three optional outputs associated with this module are available by way of macros.
These are:

e PVBBD RPWSIZE(p_data) = size of the real workspace (local to the current processor)
used by PVBBDPRE.

e PVBBD_IPWSIZE(p-data) = size of the integer workspace (local to the current pro-
cessor) used by PVBBDPRE.

e PVBBD NGE(p_data) = cumulative number of g evaluations (calls to gloc) so far.

The costs associated with PVBBDPRE also include nsetups LU factorizations, nsetups
calls to cfn, and nps banded backsolve calls, where nsetups and nps are optional CVODE
outputs.

12

Similar block-diagonal preconditioners could be considered with different treatment of
the blocks P,,. For example, incomplete LU factorization or an iterative method could be
used instead of banded LU factorization.

6. The Fortran/C Interface Package. We anticipate that many users of PVODE
will work from existing Fortran application programs. To accommodate them, we have
provided a set of interface routines that make the required connections to PVODE with a
minimum of changes to the application programs. Specifically, a Fortran/C interface package
called FPVODE is a collection of C language functions and header files which enables the
user to write a main program and all user-supplied subroutines in Fortran and to use the
C language PVODE package. This package entails some compromises in portability, but we
have kept these to a minimum by requiring fixed names for user-supplied routines, and by
using a name-mapping scheme to set the names of externals in the Fortran/C linkages. The
latter depends on two parameters, set in a small header file, which determine whether the
Fortran external names are to be in upper case and whether they are to have an underscore
character prefix.

The usage of this module is summarized below. Further details can be found in the
header file fpvode.h. Also, the user should check, and reset if necessary, the paramaters in
the file fcmixpar.h. The functions which are callable from the user’s Fortran program are
as follows:

e FPVINITMPI interfaces with PVecInitMPI and is used to initialize the NVECTOR
module.

e FPVMALLOC interfaces with CVodeMalloc and is used to initialize CVode.

e FCVDIAG interfaces with CVDiag and is used when the diagonal approximate Jacobian
has been selected.

e FCVSPGMRO, FCVSPGMR1, FCVSPGMR2 interface with CVSpgmr when SPGMR has
been chosen as the linear system solver. These three interface routines correspond
to the cases of no preconditioning, preconditioning with no saved matrix data, and
preconditioning with saved matrix data, respectively.

e FCVODE interfaces with CVode.

e FCVDKY interfaces with CVodeDky and is used to compute a derivative of order k, 0 <
k < qu, where qu is the order used for the most recent time step. The derivative is
calculated at the current output time.

e FCVFREE interfaces with CVodeFree and is used to free memory allocated for CVode.

e FVFREEMPI interfaces with PVecFreeMPI and is used to free memory allocated for
MPI.

The user-supplied Fortran subroutines are as follows. The names of these routines are
fixed and are case-sensitive.

e PVFUN which defines the function f, the right-hand side function of the system of
ODEs.

e PVPSOL which solves the preconditioner equation, and is required if preconditioning
is used.

e PVPRECO which computes the preconditioner, and is required if preconditioning in-
volves pre-computed matrix data.

13

The Fortran/C interfaces have been tested on a Cray-T3D and a cluster of Sun work-
stations.

A similar interface package, called FPVBBD, has been written for the PVBBDPRE precon-
ditioner module. It works in conjunction with the FPVODE interface package. The three
additional user-callable functions here are: FPVBBDIN, which interfaces with PVBBDAlloc
and CVSpgmr; FPVBBDOPT, which accesses optional outputs; and FPVBBDF, which interfaces to
PVBBDFree. The two user-supplied Fortran subroutines required, in addition to PVFUN to de-
fine f, are: PVLOCFN, which computes ¢(t,y); and PVCOMMF, which performs communications
necessary for PVLOCFN.

7. Example Problems. Two test problems are described here. The first is a non-stiff
problem which is included to demonstrate the capability of solving such problems and to
show that PVODE can be applied with varying numbers of processors. The second problem
is a stiff problem and illustrates the capability of solving that class of problems. Both
problems involve the method of lines solution of a partial differential equation (PDE).

7.1. Example problem 1 - A nonstiff PDE problem. This problem begins with
a prototypical diffusion-advection equation for u = u(t, z)
ou 0%u ou
— =—4+05—
o o2 T 0
for 0 <t <5, 0<z <2, and subject to homogeneous Dirichlet boundary conditions and
initial values given by

(14)

(15) u(t,0) =
u(t,2) =
u(0,2) = z(2 — x)exp(2x)

A system of M X ODEs is obtained by discretizing the z-axis with M X + 2 grid points
and replacing the first and second order spatial derivatives with their central difference
approximations. Since the value of u is constant at the two endpoints, the semi-discrete
equations for those points can be eliminated. The resulting system of ODEs can now be
written with u; the approximation to u(t, z;), z; = i(Az), and Az = 2/(MX + 1):

(16) g o Wil ~ 2u; + Uiy
=

Ujp1 — Ui—1
I R
The above equation holds for i = 1,2, ..., M X with the understanding that vy = uprx41 = 0.
In the parallel processing environment, we may think of the several processors as being
laid out on a straight line with each processor to compute its contiguous subset of the
solution vector. Consequently the computation of the right hand side of (16) requires that
each interior processor must pass the first component of its block of the solution vector to
its left-hand neighbor, acquire the last component of that neighbor’s block, pass the last
component of its block of the solution vector to its right-hand neighbor, and acquire the first
component of that neighbor’s block. If the processor is the first (Oth) or last processor, then
communication to the left or right (respectively) is not required.
14

The file pvnx.c is included in the PVODE package and is the code for this problem. It
uses the Adams (non-stiff) integration formula and functional iteration. The intent of this
problem is to illustrate the basic user-supplied code and to show that for a fixed problem
size the number of processors can be varied. As it stands, it is an unrealistically small,
simple problem. Using more than one processor simply demonstrates that this can be done.
The output shown below is for 10 grid points and four processors. Varying the number of
processors will alter the output, only because of roundoff-level differences in various vector
operations.

1-D advection-diffusion equation, mesh size = 10

Number of PEs = 4

At t = 0.00 max.norm(u) = 1.569909e+01

At t = 0.50 max.norm(u) = 3.052881e+00 nst = 113
At t = 1.00 max.norm(u) = 8.753188e-01 nst = 191
At t = 1.50 max.norm(u) = 2.494926e-01 nst = 265
At t = 2.00 max.norm(u) = 7.109674e-02 nst = 333
At t = 2.50 max.norm(u) = 2.026039e-02 nst = 404
At t = 3.00 max.norm(u) = 5.772786e-03 nst = 490
At t = 3.50 max.norm(u) = 1.644895e¢-03 nst = 608
At t = 4.00 max.norm(u) = 4.690811e-04 nst = 727
At t = 4.50 max.norm(u) = 1.343719e-04 nst = 801
At t = 5.00 max.norm(u) = 3.852882¢-05 nst = 878
Final Statistics..
nst = 878 nfe = 1358 nni = 0 ncfn = 90 netf =5

7.2. Example problem 2 - A stiff PDE system. This test problem is based on
a two-dimensional system of two PDEs involving diurnal kinetics, advection, and diffusion.
The PDEs can be written as
ac 92t ot 0 act

+V—+ —K,(y)=— + R'(c}, 1) (i=1,2),

1 T _K
(17) ot " 9r2 oz ' oy dy

where the superscripts ¢ are used to distinguish the chemical species, and where the reaction
terms are given by

(18) R'(c',c®t) = —qc'c® — quctc® + 2g3(t)c + qu(t)c?
R*(ct, A1) = qetc® — goetc® — qu(t)c?
The spatial domain is 0 < z < 20, 30 < y < 50. The constants and parameters for

this problem are as follows: K, = 4.0 x 107% V = 1073, K, = 10 8exp(y/5), ¢1 =
15

1.63 x 10716, ¢, = 4.66 x 10716, ¢® = 3.7 x 10'%, and the diurnal rate constants are defined
as follows:

¢i(t) = exp[—a;/sinwt], for sinwt >0
gi(t) = 0, for sinwt <0

where i = 3,4, w = 7/43200, a3 = 22.62, ay = 7.601. The time interval of integration is
[0, 86400], representing 24 hours measured in seconds.

Homogeneous Neumann boundary conditions are imposed on each boundary and the
initial conditions are

c(z,2,0) = 10%(z)B(y), Z(z,2,0) = 102%a(z)B(y)
(19) a(r) = 1—(0.1z — 1)+ (0.1z — 1)*/2
Bly) = 1—(0.1y—4)?+ (0.1y —4)*/2

These equations represent a simplified model for the transport, production, and loss of
the oxygen singlet and ozone in the upper atmosphere.

As before, we discretize the PDE system with central differencing, to obtain an ODE
system @ = f(t,u) representing (17). For this example, we may think of the processors as
being laid out in a rectangle, and each processor being assigned a subgrid of size M X SUB x
MY SUB of the © — y grid. If there are NPEX processors in the z direction and NPEY
processors in the y direction then the overall grid size is M X x MY with M X = NPEX X
MXSUB and MY = NPEY x MY SUB. There are 2x M X x MY equations in this system
of ODEs. To compute f in this setting, the processors pass and receive information as follows.
The solution components for the bottom row of grid points in the current processor are passed
to the processor below it and the solution for the top row of grid points is received from
the processor below the current processor. The solution for the top row of grid points for
the current processor is sent to the processor above the current processor, while the solution
for the bottom row of grid points is received from that processor by the current processor.
Similarly the solution for the first column of grid points is sent from the current processor to
the processor to its left and the last column of grid points is received from that processor by
the current processor. The communication for the solution at the right edge of the processor
is similar. If this is the last processor in a particular direction, then message passing and
receiving are bypassed for that direction.

The code listing for this example is given in the Appendix, while the code itself is in the
file pvkx.c in the PVODE package. The purpose of this code is to provide a more complicated
example than Example 1, and to provide a template for a stiff ODE system arising from a
PDE system. The solution method is BDF with Newton iteration and SPGMR. The left
preconditioner is the block-diagonal part of the Newton matrix, with 2 x 2 blocks, and the
corresponding diagonal blocks of the Jacobian are saved each time the preconditioner is
generated, for re-use later under certain conditions.

The organization of the pvkx.c program deserves some comments. The right-hand side
routine f calls two other routines: ucomm, which carries out inter-processor communication;
and fcalc which operates on local data only and contains the actual calculation of f(¢,u).

16

The ucomm function in turn calls three routines which do, respectively, non-blocking receive
operations, blocking send operations, and receive-waiting. All three use MPI, and transmit
data from the local u vector into a local working array uext, an extended copy of u. The
fcalc function copies u into uext, so that the calculation of f(t,u) can be done conveniently
by operations on uext only.

Sample output from pvkx.c follows. Again, the output will vary if the number of
processors is changed. The output is for four processors (in a 2 x 2 array) with a 5 x 5

subgrid on each processor.

2-species diurnal advection-diffusion problem

t = 7.20e+03 no. steps = 219 order = 5 stepsize .59e+02
At bottom left: «c1, c2 = 1.047e+04 .527e+11
At top right: cl, c2 = 1.119e+04 .700e+11
t = 1.44e+04 no. steps = 2561 order = 5 stepsize .T7e+02
At bottom left: «cl1, c2 = 6.659e+06 .582e+11
At top right: cl, c2 = 7.301e+06 .833e+11
t = 2.16e+04 no. steps = 277 order = 5 stepsize .75e+02
At bottom left: «cl1, c2 = 2.665e+07 .993e+11
At top right: cl, c2 = 2.931e+07 .313e+11
t = 2.88e+04 no. steps = 301 order =5 stepsize .23e+02
At bottom left: «cl1, c2 = 8.702e+06 .380e+11
At top right: cl, c2 = 9.650e+06 .751e+11
t = 3.60e+04 no. steps = 347 order = 4 stepsize .37e+01
At bottom left: «cl1, c2 = 1.404e+04 .387e+11
At top right: cl, c2 = 1.561e+04 .76be+11
t = 4.32e+04 no. steps = 411 order = 4 stepsize .64e+02
At bottom left: «c1, c2 = 1.001e-08 .382e+11
At top right: cl, c2 = 8.489e-08 .804e+11
t = 5.04e+04 no. steps = 430 order = 4 stepsize .82e+02
At bottom left: «c¢1, c2 = 1.592e-08 .368e+11
At top right: cl, c2 = 2.259e-08 .864e+11
t = 5.76e+t04 no. steps = 444 order = 5 stepsize .60e+02
At bottom left: «cl1, c2 = 1.257e-10 .320e+11
At top right: cl, c2 = 1.766e-10 .909e+11

17

t = 6.48e+04 no. steps = 456 order = 5 stepsize = 6.97e+02
At bottom left: «ci1, c2 = 6.114e-12 3.313e+11

At top right: cl, c2 = 9.739e-12 3.963e+11

t = 7.20e+04 no. steps = 467 order = 5 stepsize = 6.97e+02
At bottom left: «cl1, c2 = 7.140e-12 3.330e+11

At top right: cl, c2 = 1.010e-11 4.039%e+11

t = 7.92e+04 no. steps = 477 order = 5 stepsize = 6.97e+02
At bottom left: «ci1, c2 = -2.748e-13 3.334e+11

At top right: cl, c2 = -3.909e-13 4.120e+11

t = 8.64e+04 no. steps = 487 order = 5 stepsize = 6.97e+02
At bottom left: «c1, c2 = -2.804e-15 3.3b62e+11

At top right: cl, c2 = -3.875e-15 4.163e+11

Final Statistics..

lenrw = 2000 leniw = 0

1lrw = 2046 1liw = 0

nst = 487 nfe = 1278

nni = 636 nli = 639

nsetups = 84 netf = 32

npe = 8 nps = 1213

ncfn = 0 ncfl = 0

A third example is provided with the PVODE package, in the file pvkxb.c. It uses the
same ODE system as in the above stiff example, but a slightly different solution method. It
uses the PVBBDPRE preconditioner module to generate a band-block-diagonal preconditioner,
using half-bandwidths equal to 2.

8. Testing. The stiff example problem described in Section 7.2 has been modified and
expanded to form a test problem for PVODE. This work was largely carried out by M.
Wittman and reported in [10].

To start with, in order to add realistic complexity to the solution, the initial profile for
this problem was altered to include a rather steep front in the vertical direction. Specifically,
the function G(y) in Eq. (19) has been replaced by:

(20) B(y) = .75 + .25 tanh(10y — 400)

This function rises from about .5 to about 1.0 over a y interval of about .2 (i.e. 1/100 of
the total span in y). This vertical variation, together with the horizonatal advection and
diffusion in the problem, demands a fairly fine spatial mesh to achieve acceptable resolution.

18

In addition, an alternate choice of differenci ng is used in order to control spurious
oscillations resulting from the horizontal advection. In place of central differencing for that
term, a biased upwind approximation is applied to each of the terms 0c'/dz, namely:

(21) 8c/a$|mj ~ ng_|_1 — Cj — %Cj—l /(2A$)

With this modified form of the problem, we performed tests similar to those described
above for the example. Here we fix the subgrid dimensions at MXSUB = MYSUB = 50, so that
the local (per-processor) problem size is 5000, while the processor array dimensions, NPEX
and NPEY, are varied. In one (typical) sequence of tests, we fix NPEX = 8 (for a vertical mesh
size of MY = 400), and set NPEX = 8 (MX = 400), NPEX = 16 (MX = 800), and NPEX = 32 (MX
= 1600). Thus the largest problem size N is 2-400 - 1600 = 1,280, 000. For these tests, we
also raise the maximum Krylov dimension, max1, to 10 (from its default value of 5).

For each of the three test cases, the test program was run on a Cray-T3D (256 processors)
with each of three different message-passing libraries:

e MPICH: an implemenation of MPI on top of the Chameleon library [7]
e EPCC: an implemenation of MPI by the Edinburgh Parallel Computer Centre [4]
e SHMEM: Cray’s Shared Memory Library

The following table gives the run time and selected performance counters for these 9 runs.
In all cases, the solutions agreed well with each other, showing expected small variations with
grid size. In the table, M-P denotes the message-passing library, RT is the reported run time
in CPU seconds, nst is the number of time steps, nfe is the number of f evaluations, nni is
the number of nonlinear (Newton) iterations, nli is the number of linear (Krylov) iterations,
and npe is the number of evaluations of the preconditioner.

NPEX M-P RT nst nfe | nni nli | npe
8 MPICH | 436. | 1391 9907 | 1512 8392 | 24
8 EPCC 355. | 1391 9907 | 1512 8392 | 24
8 SHMEM | 349. | 1999 | 10,326 | 2096 | 8227 | 34
16 | MPICH | 676. | 2513 | 14,159 | 2583 | 11,573 | 42
16 EPCC 494. | 2513 | 14,159 | 2583 | 11,573 | 42
16 | SHMEM | 471. | 2513 | 14,160 | 2581 | 11,576 | 42

32 | MPICH | 1367. | 2536 | 20,153 | 2696 | 17,454 | 43
32 EPCC 737. | 2536 | 20,153 | 2696 | 17,454 | 43

32 SHMEM | 695. | 2536 | 20,121 | 2694 | 17,424 43
TABLE 1
PVODE test results vs problem size and message-passing library

Some of the results were as expected, and some were surprising. For a given mesh
size, variations in performance counts were small or absent, except for moderate (but still
acceptable) variations for SHMEM in the smallest case. The increase in costs with mesh size
can be attributed to a decline in the quality of the preconditioner, which neglects most of the
spatial coupling. The preconditioner quality can be inferred from the ratio nli/nni, which

19

is the average number of Krylov iterations per Newton iteration. The most interesting (and
unexpected) result is the variation of run time with library: SHMEM is the most efficient,
but EPCC is a very close second, and MPICH loses considerable efficiency by comparison, as
the problem size grows. This means that the highly portable MPI version of PVODE, with
an appropriate choice of MPI implementation, is fully competitive with the Cray-specific
version using the SHMEM library. While the overall costs do not prepresent a well-scaled
parallel algorithm (because of the preconditioner choice), the cost per function evaluation is
quite flat for EPCC and SHMEM, at .033 to .037 (for MPICH it ranges from .044 to .068).

For tests that demonstrate speedup from parallelism, we consider runs with fixed problem
size: MX = 800, MY = 400. Here we also fix the vertical subgrid dimension at MYSUB = 50 and
the vertical processor array dimension at NPEY = 8, but vary the corresponding horizontal
sizes. We take NPEX = 8, 16, and 32, with MXSUB = 100, 50, and 25, respectively. The
runs for the three cases and three message-passing libraries all show very good agreement
in solution values and performance counts. The run times for EPCC are 947, 494, and 278,
showing speedups of 1.92 and 1.78 as the number of processors is doubled (twice). For the
SHMEM runs, the times were slightly lower and the ratios were 1.98 and 1.91. For MPICH,
consistent with the earlier runs, the run times were considerably higher, and in fact show
speedup ratios of only 1.54 and 1.03.

9. Availability. At present, the PVODE package has not been released for general dis-
tribution. However, plans are in progress for a release that is limited to non-commercial use
of the package. Interested potential users should contact Alan Hindmarsh, alanh@IInl.gov.
The CVODE package, however, on which PVODE is based, is freely available from the Netlib
collection. See for example the listing cvode.tar.qz at the web site

http://www.netlib.org/ode/index.html
The Netlib version of the CVODE package includes the CVODE User Guide [5] in the form
of a PostScript file.

REFERENCES

[1] P. N. Brown, G. D. Byrne, and A.C. Hindmarsh, VODE, a Variable-Coefficient ODE Solver, SIAM J.
Sci. Stat. Comput., 10 (1989), 1038-1051.

[2] P. N. Brown and A. C. Hindmarsh, Reduced Storage Matriz Methods in Stiff ODE Systems, J. Appl.
Math. & Comp., 31 (1989), pp. 40-91.

[3] George D. Byrne, Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting, in Computa-
tional Ordinary Differential Equations, J. R. Cash and I. Gladwell (Eds.), Oxford University Press,
Oxford, 1992, pp. 323-356.

[4] K. Cameron, L. J. Clarke, and A. G. Smith, Using MPI on the Cray T3D, Edinburgh Parallel Computing
Centre informal document, November 1995.

[5] Scott D. Cohen and Alan C. Hindmarsh, CVODE User Guide, Lawrence Livermore National Laboratory
report UCRL-MA-118618, Sept. 1994.

[6] Scott D. Cohen and Alan C. Hindmarsh, CVODE, a Stiff/Nonstiff ODE Solver in C, Computers in
Physics, 10, No. 2 (1996), pp. 138-143.

[7] W.D. Gropp and E. Lusk, A Test Implementation of the MPI Draft Message-Passing Standard, Technical
Report ANL-92/47, Argonne National Laboratory, December 1992.

[8] William Gropp, Ewing Lusk, and Anthony Skjellum, Using MPI Portable Parallel Programming with
the Message-Passing Interface, The MIT Press, Cambridge, MA, 1994.

20

[9] S.Balay, W. Gropp, L. McInnes, and B. Smith, PETSc 2.0 Users Manual, Argonne National Laboratory,
1996.

[10] Michael R. Wittman, Testing of PVODE, a Parallel ODE Solver, Lawrence Livermore National Labo-
ratory report UCRL-ID-125562, August 1996.

[11] Alan C. Hindmarsh and Allan G. Taylor, PVODE and KINSOL: Parallel Software for Differential and
Nonlinear Systems, Lawrence Livermore National Laboratory report UCRL-ID-129739, February
1998.

21

10. Appendix: Listing of Stiff Example Program.

/**

* *
* File: pvkx.c *
* Programmers: S. D. Cohen, A. C. Hindmarsh, M. R. Wittman @ LLNL *
* Version of 14 May 1998 *
M —————————————————————— *

Example problem.
An ODE system is generated from the following 2-species diurnal
kinetics advection-diffusion PDE system in 2 space dimensions:

dc(i)/dt = Kh*(d/dx)"2 c(i) + V*dc(i)/dx + (d/dy) (Kv(y)*dc(i)/dy)
+ Ri(cl,c2,t) for i = 1,2, where
Ri1(cl,c2,t) = —gl*cl*c3 - g2*cl*xc2 + 2xq3(t)*c3 + q4(t)*c2 ,
R2(c1,c2,t) gql*xcl*c3 - g2*cl*c2 - q4(t)*c2 ,
Kv(y) = KvOxexp(y/5) ,
Kh, V, KvO, ql, g2, and c3 are constants, and q3(t) and g4(t)
vary diurnally. The problem is posed on the square
0 <= x <= 20, 30 <= y <= 50 (all in km),
with homogeneous Neumann boundary conditions, and for time t in
0 <= t <= 86400 sec (1 day).
The PDE system is treated by central differences on a uniform
mesh, with simple polynomial initial profiles.

The problem is solved by PVODE on NPE processors, treated as a
rectangular process grid of size NPEX by NPEY, with NPE = NPEX*NPEY.
Each processor contains a subgrid of size MXSUB by MYSUB of the
(x,y) mesh. Thus the actual mesh sizes are MX = MXSUB*NPEX and

MY = MYSUB*NPEY, and the ODE system size is neq = 2*MX*MY.

The solution with PVODE is done with the BDF/GMRES method (i.e.
using the CVSPGMR linear solver) and the block-diagonal part of the
Newton matrix as a left preconditioner. A copy of the block-diagonal
part of the Jacobian is saved and conditionally reused within the
Precond routine.

Performance data and sampled solution values are printed at selected
output times, and all performance counters are printed on completion.

¥ X X X K K K X K X K X K X X ¥ X X X ¥ X K X ¥ ¥ ¥ ¥ ¥ ¥ * ¥ * *

This version uses MPI for user routines, and the MPI_PVODE solver.
Execution: pvkx -npes N with N = NPEX#NPEY (see constants below).
sk e s sk ke o sk sk ke o sk sk e o sk ok e ok sk ok e ok sk ok e s sk sk ke s sk sk ok s s sk sk e ke ok sk ok e ok kol ke s ks ok s sk sk ok s e sk sk ke sk ok sk ok ke sk sk ok sk ok ok /

¥ K K X K X X X X X K X K X K X K ¥ K X K X X ¥ X ¥ X ¥ X ¥ X * * *

*

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "1lnltyps.h" /* definitions of real, integer, boole, TRUE,FALSE */

22

#include "cvode.h" /* main CVODE header file */
#include "iterativ.h" /* contains the enum for types of preconditioning */
#include "cvspgmr.h" /% use CVSPGMR linear solver each internal step */

#include "smalldense.h" /* use generic DENSE solver in preconditioning */
#include "nvector.h" /+* definitions of type N_Vector, macro N_VDATA */
#include "llnlmath.h" /* contains SQR macro */

#include "mpi.h"

/* Problem Constants */

#define NVARS 2 /* number of species */

#define KH 4.0e-6 /* horizontal diffusivity Kh */

#define VEL 0.001 /* advection velocity V */

#define KVO 1.0e-8 /* coefficient in Kv(y) */

#define Q1 1.63e-16 /* coefficients ql, g2, c¢3 */

#define Q2 4.66e-16

#define C3 3.7e16

#define A3 22.62 /* coefficient in expression for q3(t) */

#define A4 7.601 /* coefficient in expression for q4(t) */

#define C1_SCALE 1.0e6 /* coefficients in initial profiles */

#define C2_SCALE 1.0e12

#define TO 0.0 /* initial time */

#define NQUT 12 /* number of output times */

#define TWOHR 7200.0 /* number of seconds in two hours */

#define HALFDAY 4.32e4 /* number of seconds in a half day */

#define PI 3.1415926535898 /* pi */

#define XMIN 0.0 /* grid boundaries in x */

#define XMAX 20.0

#define YMIN 30.0 /* grid boundaries in y */

#define YMAX 50.0

#define NPEX 2 /* no. PEs in x direction of PE array */

#define NPEY 2 /* no. PEs in y direction of PE array */
/* Total no. PEs = NPEX*NPEY */

#define MXSUB 5 /* no. x points per subgrid */

#define MYSUB 5 /* no. y points per subgrid */

#define MX (NPEX*MXSUB) /* MX = number of x mesh points */

#define MY (NPEY*MYSUB) /* MY = number of y mesh points */

/* Spatial mesh is MX by MY */
/* CVodeMalloc Constants */

#define RTOL 1.0e-5 /* scalar relative tolerance */
#define FLOOR 100.0 /* value of C1 or C2 at which tolerances */

23

/* change from relative to absolute
#define ATOL (RTOL*FLOOR) /* scalar absolute tolerance */

/* User-defined matrix accessor macro: IJth */

/* IJth is defined in order to write code which indexes into small dense
matrices with a (row,column) pair, where 1 <= row,column <= NVARS.

IJth(a,i,j) references the (i,j)th entry of the small matrix real **a,
where 1 <= i,j <= NVARS. The small matrix routines in dense.h

work with matrices stored by column in a 2-dimensional array. In C,
arrays are indexed starting at O, not 1. */

#define IJth(a,i,j) (alj-11[i-11)

/* Type : UserData
contains problem constants, preconditioner blocks, pivot arrays,
grid constants, and processor indices */

typedef struct {
real g4, om, dx, dy, hdco, haco, vdco;
real uext[NVARS*(MXSUB+2)*(MYSUB+2)];
integer my_pe, isubx, isuby, nvmxsub, nvmxsub2;
MPI_Comm comm;
} *UserData;

typedef struct {
void *f_data;
real *xP[MXSUB] [MYSUB], **Jbd[MXSUB] [MYSUB] ;
integer *pivot [MXSUB] [MYSUB];

} *PreconData;

/* Private Helper Functions */

static PreconData AllocPreconData(UserData data);

static void InitUserData(integer my_pe, MPI_Comm comm, UserData data);

static void FreePreconData(PreconData pdata);

static void SetInitialProfiles(N_Vector u, UserData data);

static void PrintOutput(integer my_pe, MPI_Comm comm, long int iopt[],
real ropt[], N_Vector u, real t);

static void PrintFinalStats(long int iopt[]);

*/

static void BSend(MPI_Comm comm, integer my_pe, integer isubx, integer isuby,

integer dsizex, integer dsizey, real udatall);
static void BRecvPost(MPI_Comm comm, MPI_Request request[], integer my_pe,
integer isubx, integer isuby,
24

integer dsizex, integer dsizey,
real uext[], real buffer[]);

static void BRecvWait (MPI_Request request[], integer isubx, integer isuby,
integer dsizex, real uext[], real buffer[]);

static void ucomm(integer N, real t, N_Vector u, UserData data);

static void fcalc(integer N, real t, real udatal[], real dudatal[], UserData data);

/* Functions Called by the CVODE Solver */
static void f(integer N, real t, N_Vector u, N_Vector udot, void *f_data);

static int Precond(integer N, real tn, N_Vector u, N_Vector fu, boole jok,
boole *jcurPtr, real gamma, N_Vector ewt, real h,
real uround, long int *nfePtr, void *P_data,
N_Vector vtempl, N_Vector vtemp2, N_Vector vtemp3);

static int PSolve(integer N, real tn, N_Vector u, N_Vector fu, N_Vector vtemp,
real gamma, N_Vector ewt, real delta, long int *nfePtr,
N_Vector r, int 1lr, void *P_data, N_Vector z);

/R FA Rk koK ok Kok ok kokok ok dokkkokkok Main Program skkskskokskokskkokkokkokskokokkok ok ok ok ok ok kokokk /

main(int argc, char *argv[])
{
real abstol, reltol, t, tout, ropt[OPT_SIZE];
long int iopt[OPT_SIZE];
N_Vector u;
UserData data;
PreconData predata;
void *cvode_mem;
int iout, flag;
integer neq, local_N, my_pe, npes;
machEnvType machEnv;
MPI_Comm comm;

/* Set problem size neq */

neq = NVARS*MX*MY;

/* Get processor number and total number of pe’s */
MPI_Init(&argc, &argv);

comm = MPI_COMM_WORLD;

MPI_Comm_size (comm, &npes);

MPI_Comm_rank (comm, &my_pe);

if (npes != NPEX*NPEY) {
25

if (my_p
printf
return (1l
}
/* Set loc
local_N =

/* Allocat

data = (Us

e == O)

("\n npes=%d is not equal to NPEX*NPEY=}/d\n", npes,NPEX*NPEY) ;
)3

al length */

NVARS*MXSUB*MYSUB ;

e and load user data block; allocate preconditioner block */

erData) malloc(sizeof *data);

InitUserData(my_pe, comm, data);

predata =
/* Set mac

machEnv =

AllocPreconData (data);
hEnv block */

PVecInitMPI(comm, local_N, neq, &argc, &argv);

if (machEnv == NULL) return(l);

/* Allocat

u = N_VNew
SetInitial
abstol = A

e u, and set initial values and tolerances */

(neq, machEnv);
Profiles(u, data);
TOL; reltol = RTOL;

/* Call CVodeMalloc to initialize CVODE:

neq
f

TO

u

BDF
NEWTON
SS
&reltol
data
FALSE
iopt

A point
cvode_mem
if (cvode_

/* Call CV
left pr

is the problem size = number of equations

is the user’s right hand side function in u’=f(t,u)

is the initial time

is the initial dependent variable vector

specifies the Backward Differentiation Formula

specifies a Newton iteration

specifies scalar relative and absolute tolerances

and &abstol are pointers to the scalar tolerances

is the pointer to the user-defined block of coefficients
indicates there are no optional inputs in iopt and ropt
and ropt arrays communicate optional integer and real input/output

er to CVODE problem memory is returned and stored in cvode_mem. */

= CVodeMalloc(neq, f, TO, u, BDF, NEWTON, SS, &reltol,
&abstol, data, NULL, FALSE, iopt, ropt, machEnv);
mem == NULL) { printf("CVodeMalloc failed."); return(l); }

Spgmr to specify the CVODE linear solver CVSPGMR with
econditioning, modified Gram-Schmidt orthogonalization,

26

default values for the maximum Krylov dimension maxl and the tolerance
parameter delt, preconditioner setup and solve routines Precond and
PSolve, and the pointer to the preconditioner data block.

CVSpgmr (cvode_mem, LEFT, MODIFIED_GS, O, 0.0, Precond, PSolve, predata);

if (my_pe == 0)
printf ("\n2-species diurnal advection-diffusion problem\n\n");

/* In loop over output points, call CVode, print results, test for error */

for (iout=1, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) {
flag = CVode(cvode_mem, tout, u, &t, NORMAL);
PrintOutput (my_pe, comm, iopt, ropt, u, t);
if (flag != SUCCESS) {
if (my_pe == 0) printf("CVode failed, flag=Yd.\n", flag);
break;
}
}

/* Free memory and print final statistics */

N_VFree(u);

FreePreconData(predata) ;
CVodeFree(cvode_mem) ;

if (my_pe == 0) PrintFinalStats(iopt);
PVecFreeMPI (machEnv) ;

MPI_Finalize();

return(0) ;

[FFskdokkoskdokkskdokkkkokkkkokokk Private Helper FUnCtions sskskksksksokskskskokskokskokkokskdkokokokk /
/* Allocate memory for data structure of type UserData */
static PreconData AllocPreconData(UserData fdata)
{
int 1x, ly;
PreconData pdata;
pdata = (PreconData) malloc(sizeof *pdata);
pdata->f_data = fdata;
for (1x = 0; 1x < MXSUB; 1x++) {

for (ly = 0; ly < MYSUB; 1ly++) {
27

(pdata->P) [1x] [1y] = denalloc(NVARS);
(pdata->Jbd) [1x] [1y] = denalloc(NVARS);
(pdata->pivot) [1x] [1y] = denallocpiv(NVARS);

return(pdata) ;

}
/* Load constants in data */

static void InitUserData(integer my_pe, MPI_Comm comm, UserData data)

{

integer isubx, isuby;

/* Set problem constants */

data->om = PI/HALFDAY;

data->dx = (XMAX-XMIN)/((real)(MX-1));
data->dy = (YMAX-YMIN)/((real)(MY-1));
data->hdco = KH/SQR(data->dx);
data->haco = VEL/(2.0*data->dx);
data->vdco (1.0/SQR(data->dy)) *KVO;

/* Set machine-related constants */

data->comm = comm;

data->my_pe = my_pe;

/* isubx and isuby are the PE grid indices corresponding to my_pe */
isuby = my_pe/NPEX;

isubx = my_pe - isuby*NPEX;

data->isubx = isubx;

data->isuby = isuby;

/* Set the sizes of a boundary x-line in u and uext */
data->nvmxsub = NVARS*MXSUB;

data->nvmxsub2 = NVARS* (MXSUB+2) ;

}
/* Free data memory */

static void FreePreconData(PreconData pdata)

{
int 1x, ly;

for (1x = 0; 1x < MXSUB; 1x++) {
for (1y = 0; 1y < MYSUB; ly++) {
denfree((pdata->P) [1x] [1y]);
denfree((pdata->Jbd) [1x] [1y]);
denfreepiv((pdata->pivot) [1x][1y]);
28

free(pdata);
}

/* Set initial conditions in u */

static void SetInitialProfiles(N_Vector u, UserData data)
{

integer isubx, isuby, 1lx, ly, jx, jy, offset;

real dx, dy, x, y, ¢cx, cy, xmid, ymid;

real *udata;

/* Set pointer to data array in vector u */
udata = N_VDATA(u);
/* Get mesh spacings, and subgrid indices for this PE */

dx = data->dx; dy = data->dy;
isubx = data->isubx; isuby = data—>isuby;

/* Load initial profiles of cl and c2 into local u vector.
Here 1x and ly are local mesh point indices on the local subgrid,
and jx and jy are the global mesh point indices. */

offset = 0;
xmid .5% (XMIN + XMAX);
ymid .5%(YMIN + YMAX);
for (1y = 0; 1y < MYSUB; ly++) {
jy = ly + isuby*MYSUB;
y = YMIN + jy*dy;
cy = SQR(0.1*(y - ymid));
cy = 1.0 - ¢y + 0.5*SQR(cy);
for (1x = 0; 1x < MXSUB; 1x++) {
jx = 1x + isubx*MXSUB;
x = XMIN + jx*dx;
cx = SQR(0.1*(x - xmid));
cx = 1.0 - ¢cx + 0.5%SQR(cx);
udataloffset] = C1_SCALE*cx*cCy;
udataloffset+1] = C2_SCALE*cx*cy;
offset = offset 2;

+

/* Print current t, step count, order, stepsize, and sampled cl,c2 values */
29

static void PrintOutput(integer my_pe, MPI_Comm comm, long int iopt[],

{

real ropt[], N_Vector u, real t)

real *udata, tempul2];
integer npelast, i0, iil;
MPI_Status status;

npelast = NPEX*NPEY - 1;
udata = N_VDATA(u);

/* Send cl,c2 at top right mesh point to PE 0 */
if (my_pe == npelast) {
i0 = NVARS*MXSUB*MYSUB - 2;
i1 = 10 + 1;
if (npelast != 0)
MPI_Send(&udatal[iO], 2, PVEC_REAL_MPI_TYPE, O, 0, comm);
else {
tempu[0] = udatal[iO];
tempul[1] = udatalill;

}
}

/* On PE 0, receive cl,c2 at top right, then print performance data
and sampled solution values */
if (my_pe == 0) {
if (npelast '= 0)
MPI_Recv(&tempul[O], 2, PVEC_REAL_MPI_TYPE, npelast, O, comm, &status);
printf("t = %.2e no. steps = /d order = /d stepsize = }.2e\n",
t, iopt[NST], iopt[QU], ropt[HU]);
printf ("At bottom left: «cl, c¢2 = %12.3e %12.3e \n", udata[0], udatal1]);
printf("At top right: cl, c2 = %12.3e %12.3e \n\n", tempulO], tempul[l]);
}

/* Print final statistics contained in iopt */

static void PrintFinalStats(long int iopt[])

{

printf ("\nFinal Statistics.. \n\n");
printf ("lenrw %51d leniw = %51d\n", iopt[LENRW], iopt[LENIW]);
printf ("1lrw %51d 1liw = %51d\n", iopt[SPGMR_LRW], iopt[SPGMR_LIW]);

printf ("nst = %51d nfe = %51d\n", iopt[NST], iopt[NFE]);

printf ("nni = %51d nli = %51d\n", iopt[NNI], iopt[SPGMR_NLI]);
printf ("nsetups = %51d netf = %51d\n", iopt[NSETUPS], iopt[NETF]);

printf ("npe = 9%51d nps = %51d\n", iopt[SPGMR_NPE], iopt[SPGMR_NPS]);

printf ("ncfn %51d ncfl = %51d\n \n", iopt[NCFN], iopt[SPGMR_NCFL]) ;

30

/* Routine to send boundary data to neighboring PEs */

static void BSend(MPI_Comm comm, integer my_pe, integer isubx, integer isuby,
integer dsizex, integer dsizey, real udatal])
{
int i, ly;
integer offsetu, offsetbuf;
real bufleft[NVARS*MYSUB], bufright [NVARS*MYSUB] ;

/* If isuby > O, send data from bottom x-line of u */

if (isuby != 0)
MPI_Send(&udatal[0], dsizex, PVEC_REAL_MPI_TYPE, my_pe-NPEX, O, comm);

/* If isuby < NPEY-1, send data from top x-line of u */

if (isuby != NPEY-1) {

offsetu = (MYSUB-1)*dsizex;

MPI_Send(&udataloffsetul, dsizex, PVEC_REAL_MPI_TYPE, my_pe+NPEX, O, comm) ;
}

/* If isubx > 0, send data from left y-line of u (via bufleft) */

if (isubx != 0) {
for (ly = 0; ly < MYSUB; 1ly++) {
offsetbuf = 1y*NVARS;
offsetu = ly*dsizex;
for (i = 0; i < NVARS; i++)
bufleft [offsetbuf+i] = udata[offsetu+i];
}
MPI_Send(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE, my_pe-1, 0, comm);
}

/* If isubx < NPEX-1, send data from right y-line of u (via bufright) */

if (isubx '= NPEX-1) {
for (1y = 0; 1y < MYSUB; 1ly++) {
offsetbuf = 1ly*NVARS;
offsetu = offsetbuf*MXSUB + (MXSUB-1)=*NVARS;
for (i = 0; i < NVARS; i++)
bufright [offsetbuf+i] = udataloffsetu+i];
}
MPI_Send(&bufright [0], dsizey, PVEC_REAL_MPI_TYPE, my_pe+1, O, comm);
}

31

/* Routine to start receiving boundary data from neighboring PEs.
Notes:
1) buffer should be able to hold 2*NVARS*MYSUB real entries, should be
passed to both the BRecvPost and BRecvWait functions, and should not
be manipulated between the two calls.
2) request should have 4 entries, and should be passed in both calls also. */

static void BRecvPost (MPI_Comm comm, MPI_Request request[], integer my_pe,
integer isubx, integer isuby,
integer dsizex, integer dsizey,
real uext[], real buffer[])

integer offsetue;
/* Have bufleft and bufright use the same buffer */
real *bufleft = buffer, *bufright = buffer+NVARS*MYSUB;

/* If isuby > 0, receive data for bottom x-line of uext */
if (isuby !'= 0)
MPI_Irecv(&uext[NVARS], dsizex, PVEC_REAL_MPI_TYPE,
my_pe-NPEX, 0, comm, &request[0]);

/* If isuby < NPEY-1, receive data for top x-line of uext */
if (isuby != NPEY-1) {
offsetue = NVARS*(1 + (MYSUB+1)x*(MXSUB+2));
MPI_Irecv(&uext[offsetue], dsizex, PVEC_REAL_MPI_TYPE,
my_pe+NPEX, O, comm, &request[1]);

/* If isubx > 0, receive data for left y-line of uext (via bufleft) */
if (isubx != 0) {
MPI_Irecv(&bufleft[0], dsizey, PVEC_REAL_MPI_TYPE,
my_pe-1, 0, comm, &request[2]);

/* If isubx < NPEX-1, receive data for right y-line of uext (via bufright) */
if (isubx != NPEX-1) {
MPI_Irecv(&bufright [0], dsizey, PVEC_REAL_MPI_TYPE,
my_pe+l, 0, comm, &request[3]);

/* Routine to finish receiving boundary data from neighboring PEs.
Notes:
1) buffer should be able to hold 2*NVARS*MYSUB real entries, should be
passed to both the BRecvPost and BRecvWait functions, and should not
be manipulated between the two calls.
2) request should have 4 entries, and should be passed in both calls also. */

32

static void BRecvWait (MPI_Request request[], integer isubx, integer isuby,
integer dsizex, real uext[], real buffer[])
{
int i, ly;
integer dsizex2, offsetue, offsetbuf;
real *bufleft = buffer, *bufright = buffer+NVARS*MYSUB;
MPI_Status status;

dsizex2 = dsizex + 2xNVARS;

/* If isuby > 0, receive data for bottom x-line of uext */
if (isuby != 0)
MPI_Wait (&request[0],&status);

/* If isuby < NPEY-1, receive data for top x-line of uext */
if (isuby != NPEY-1)
MPI_Wait (&request[1],&status);

/* If isubx > 0, receive data for left y-line of uext (via bufleft) */
if (isubx != 0) {
MPI_Wait (&request[2],&status);

/* Copy the buffer to uext */
for (ly = 0; 1y < MYSUB; 1ly++) {
offsetbuf = 1ly*NVARS;
offsetue = (ly+1)*dsizex2;
for (i = 0; i < NVARS; i++)
uext [offsetue+i] = bufleft[offsetbuf+i];

/* If isubx < NPEX-1, receive data for right y-line of uext (via bufright) */
if (isubx != NPEX-1) {
MPI_Wait (&request[3],&status);

/* Copy the buffer to uext */

for (1y = 0; 1y < MYSUB; 1ly++) {
offsetbuf = 1y*NVARS;
offsetue = (1ly+2)*dsizex2 - NVARS;
for (i = 0; i < NVARS; i++)

uext [offsetue+i] = bufright [offsetbuf+i];
}
}

/* ucomm routine. This routine performs all communication
33

between processors of data needed to calculate f. */

static void ucomm(integer N, real t, N_Vector u, UserData data)

{
real *udata, *uext, buffer[2*NVARS*MYSUB] ;
MPI_Comm comm;
integer my_pe, isubx, isuby, nvmxsub, nvmysub;

MPI_Request request[4];

udata = N_VDATA(u);

/* Get comm, my_pe, subgrid indices, data sizes, extended array uext */

comm = data->comm; my_pe = data->my_pe;

isubx = data->isubx; isuby = data->isuby;
nvmxsub = data->nvmxsub;
nvmysub = NVARS*MYSUB;

uext = data->uext;

/* Start receiving boundary data from neighboring PEs */

BRecvPost (comm, request, my_pe, isubx, isuby, nvmxsub, nvmysub, uext, buffer);
/* Send data from boundary of local grid to neighboring PEs */

BSend (comm, my_pe, isubx, isuby, nvmxsub, nvmysub, udata);

/* Finish receiving boundary data from neighboring PEs */

BRecvWait(request, isubx, isuby, nvmxsub, uext, buffer);

}

/* fcalc routine. Compute f(t,y). This routine assumes that communication
between processors of data needed to calculate f has already been done,
and this data is in the work array uext. */

static void fcalc(integer N, real t, real udatal[], real dudata[], UserData data)
{

real *uext;

real q3, cl1, c2, cldn, c2dn, clup, c2up, cllt, c2lt;

real clrt, c2rt, cydn, cyup, hordl, hord2, horadl, horad2;

real qql, qa2, qq3, qa4, rkinl, rkin2, s, vertdl, vertd2, ydn, yup;

real qg4coef, dely, verdco, hordco, horaco;

34

int i, 1x, ly, jx, jy;
integer isubx, isuby, nvmxsub, nvmxsub2, offsetu, offsetue;

/* Get subgrid indices, data sizes, extended work array uext */

isubx = data->isubx; isuby = data->isuby;
nvmxsub = data->nvmxsub; nvmxsub2 = data->nvmxsub2;
uext = data->uext;

/* Copy local segment of u vector into the working extended array uext */

offsetu = 0;

offsetue = nvmxsub2 + NVARS;

for (1y = 0; 1y < MYSUB; ly++) {
for (i = 0; i < nvmxsub; i++) uext[offsetue+i] = udataloffsetu+i];
offsetu = offsetu + nvmxsub;
offsetue = offsetue + nvmxsub2;

}

/* To facilitate homogeneous Neumann boundary conditions, when this is
a boundary PE, copy data from the first interior mesh line of u to uext */

/* If isuby = 0, copy x-line 2 of u to uext */
if (isuby == 0) {
for (i = 0; i < nvmxsub; i++) uext[NVARS+i] = udata[nvmxsub+il;

}

/* If isuby = NPEY-1, copy x-line MYSUB-1 of u to uext */
if (isuby == NPEY-1) {
offsetu = (MYSUB-2)*nvmxsub;
offsetue = (MYSUB+1)*nvmxsub2 + NVARS;
for (i = 0; i < nvmxsub; i++) uext[offsetue+i] = udataloffsetu+i];

}

/* If isubx = 0, copy y-line 2 of u to uext */
if (isubx == 0) {
for (ly = 0; 1y < MYSUB; ly++) {
offsetu = ly*nvmxsub + NVARS;
offsetue = (ly+1)*nvmxsub2;
for (i = 0; i < NVARS; i++) uext[offsetue+i] = udataloffsetu+i];
}
}

/* If isubx = NPEX-1, copy y-line MXSUB-1 of u to uext */
if (isubx == NPEX-1) {
for (ly = 0; 1y < MYSUB; 1ly++) {
offsetu = (ly+1)*nvmxsub - 2*NVARS;
offsetue = (ly+2)*nvmxsub2 - NVARS;

35

for (i = 0; i < NVARS; i++) uext[offsetue+i] = udatal[offsetu+il;
}
}

/* Make local copies of problem variables, for efficiency */

dely = data—->dy;
verdco = data->vdco;
hordco = data->hdco;
horaco = data->haco;

/* Set diurnal rate coefficients as functions of t, and save g4 in
data block for use by preconditioner evaluation routine */

s = sin((data->om)*t);
if (s > 0.0) {
q3 = exp(-A3/s);

g4coef = exp(-A4/s);
} else {

q3 = 0.0;

qé4coef = 0.0;
}
data->g4 = g4coef;

/* Loop over all grid points in local subgrid */
for (ly = 0; 1y < MYSUB; 1ly++) {
jy = ly + isuby*MYSUB;
/* Set vertical diffusion coefficients at jy +- 1/2 */

ydn = YMIN + (jy - .5)*dely;

yup = ydn + dely;

cydn = verdcoxexp(0.2*ydn) ;

cyup = verdcoxexp (0.2*yup) ;

for (1x = 0; 1x < MXSUB; 1x++) {

jx = 1x + isubx*MXSUB;
/* Extract cl1 and c2, and set kinetic rate terms */

offsetue = (1x+1)*NVARS + (1ly+1)*nvmxsub2;
cl = uext[offsetue];
c2 = uext[offsetue+l];
qql = Q1*c1*C3;
qq2 = Q2*cl*c2;
36

qq3 = q3*C3;

qq4 = g4coefx*c2;

rkinl = -qql - qq2 + 2.0*qq3 + qg4;
rkin2 = qql - qq2 - qq4;

/* Set vertical diffusion terms */

cldn = uext[offsetue-nvmxsub2];

c2dn = uext[offsetue—nvmxsub2+1];

clup = uext[offsetue+nvmxsub2];

c2up = uext[offsetue+nvmxsub2+1];

vertdl = cyup*(clup - cl) - cydn*(cl - cldn);
vertd2 = cyup*(c2up - c2) - cydn*(c2 - c2dn);

/* Set horizontal diffusion and advection terms */

cllt = uext[offsetue-2];

c21t = uext[offsetue-1];

clrt = uext[offsetue+2];

c2rt = uext[offsetue+3];

hordl = hordco*(cirt - 2.0*cl + ci1lt);
hord2 = hordco*(c2rt - 2.0%c2 + c21t);
horadl = horaco*(clrt - ci1lt);

horad2 = horaco*(c2rt - c21t);

/* Load all terms into dudata */

offsetu = 1x*NVARS + ly*nvmxsub;
dudataloffsetul = vertdl + hordl + horadl + rkini;
dudata[offsetu+l] = vertd2 + hord2 + horad2 + rkin2;

[*xFkkxkkkxkkkkk k% Functions Called by the CVODE Solver sskskskskskkskskskkkskkkksk /

/* £ routine. Evaluate f(t,y). First call ucomm to do communication of
subgrid boundary data into uext. Then calculate f by a call to fcalc. */

static void f(integer N, real t, N_Vector u, N_Vector udot, void *f_data)

{
real *udata, *dudata;
UserData data;

udata = N_VDATA(u);
dudata = N_VDATA(udot);

37

data = (UserData) f_data;

/* Call ucomm to do inter-processor communicaiton */
ucomm (N, t, u, data);
/* Call fcalc to calculate all right-hand sides */

fcalc (N, t, udata, dudata, data);

/* Preconditioner setup routine. Generate and preprocess P. */

static int Precond(integer N, real tn, N_Vector u, N_Vector fu, boole jok,
boole *jcurPtr, real gamma, N_Vector ewt, real h,
real uround, long int *nfePtr, void *P_data,
N_Vector vtempl, N_Vector vtemp2, N_Vector vtemp3)

real cl, c2, cydn, cyup, diag, ydn, yup, g4coef, dely, verdco, hordco;
real **(xP)[MYSUB], **(*Jbd) [MYSUB];

integer nvmxsub, *(*pivot) [MYSUB], ier, offset;

int 1x, ly, jx, jy, isubx, isuby;

real *udata, **a, **j;

PreconData predata;

UserData data;

/* Make local copies of pointers in P_data, pointer to u’s data,
and PE index pair */

predata = (PreconData) P_data;

data = (UserData) (predata->f_data);

P = predata->P;

Jbd = predata->Jbd;

pivot = predata->pivot;

udata = N_VDATA(u);

isubx = data->isubx; isuby = data->isuby;
nvmxsub = data->nvmxsub;

if (jok) {
/* jok = TRUE: Copy Jbd to P */

for (1y = 0; 1y < MYSUB; ly++)
for (1x = 0; 1x < MXSUB; 1x++)
dencopy (Jbd[1x] [1y], P[1x][1y]l, NVARS);

38

*jcurPtr = FALSE;

}

else {

/* jok = FALSE: Generate Jbd from scratch and copy to P */
/* Make local copies of problem variables, for efficiency */

gd4coef = data->qg4;
dely = data->dy;
verdco = data->vdco;
hordco = data->hdco;

/* Compute 2x2 diagonal Jacobian blocks (using g4 values
computed on the last f call). Load into P. */

for (1y = 0; 1y < MYSUB; 1ly++) {

jy = 1y + isuby*MYSUB;

ydn = YMIN + (jy - .5)*dely;

yup = ydn + dely;

cydn = verdcoxexp(0.2+*ydn);

cyup = verdcoxexp(0.2*yup);

diag = -(cydn + cyup + 2.0%hordco);

for (1x = 0; 1x < MXSUB; 1x++) {
jx = 1x + isubx*MXSUB;
offset = 1x*NVARS + ly*nvmxsub;
cl = udatal[offset];
c2 = udataloffset+1];
j = Jbd[1x] [1y];
a = P[1x][1y];
IJth(j,1,1) = (-Q1%C3 - Q2*c2) + diag;
IJth(j,1,2) = -Q2%cl + g4coef;

IJth(j,2,1) = Q1*C3 - Q2*c2;
I1Jth(j,2,2) = (-Q2*cl - g4coef) + diag;
dencopy(j, a, NVARS);

*jcurPtr = TRUE;
}
/* Scale by -gamma */

for (1y = 0; 1y < MYSUB; 1ly++)
39

for (1x = 0; 1x < MXSUB; 1x++)
denscale(-gamma, P[1x][1y], NVARS);

/* Add identity matrix and do LU decompositions on blocks in place */

for (1x = 0; 1x < MXSUB; 1x++) {
for (1y = 0; 1y < MYSUB; 1ly++) {
denaddI(P[1x] [1y], NVARS);
ier = gefa(P[1x][1y], NVARS, pivot[1x][1y]);
if (dier !'= 0) return(l);
}
}

return(0) ;

/* Preconditioner solve routine */

static int PSolve(integer N, real tn, N_Vector u, N_Vector fu, N_Vector vtemp,
real gamma, N_Vector ewt, real delta, long int *nfePtr,
N_Vector r, int 1lr, void *P_data, N_Vector z)

real *x(xP)[MYSUB];

integer nvmxsub, *(*pivot) [MYSUB];
int 1x, ly;

real *zdata, *v;

PreconData predata;

UserData data;

/* Extract the P and pivot arrays from P_data */

predata = (PreconData) P_data;

data = (UserData) (predata->f_data);
P = predata->P;

pivot = predata->pivot;

/* Solve the block-diagonal system Px = r using LU factors stored
in P and pivot data in pivot, and return the solution in z.
First copy vector r to z. */

N_VScale(1.0, r, z);

nvmxsub = data->nvmxsub;
zdata = N_VDATA(z);

for (1x = 0; 1x < MXSUB; 1x++) {
for (ly = 0; ly < MYSUB; 1ly++) {
40

v = &(zdata[lx*NVARS + ly*nvmxsubl);
ges1(P[1x] [1y], NVARS, pivot[lx][lyl, v);
}
}

return(0);

}

41

